Групповой выбор. Правила «статистической» техники безопасности
Пусть имеется группа лиц, имеющих право принимать участие в коллективном принятии решений. Предположим, что эта группа рассматривает некоторый набор альтернатив, и каждый член группы осуществляет свой выбор. Ставится задача о выработке решения, которое определенным образом согласует индивидуальные выборы и в каком-то смысле выражает "общее мнение" группы, т.е. принимается за групповой выбор.
Естественно, различным принципам согласования индивидуальных решений будут соответствовать различные групповые решения.
Правила согласования индивидуальных решений при групповом выборе называются правилами голосования. Наиболее распространенным является "правило большинства", при котором за групповое решение принимается альтернатива, получившая наибольшее число голосов.
Необходимо понимать, что такое решение отражает лишь распространенность различных точек зрения в группе, а не действительно оптимальный вариант, за который вообще никто может и не проголосовать. "Истина не определяется путем голосования", самой распространенной точкой зрения может быть и заблуждение.
Кроме того, существуют так называемые "парадоксы голосования", наиболее известный из которых парадокс Эрроу.
Эти парадоксы могут привести, и иногда действительно приводят, к очень неприятным особенностям процедуры голосования: например бывают случаи, когда группа вообще не может принять единственного решения (нет кворума или каждый голосует за свой уникальный вариант, и т.д.), а иногда (при многоступенчатом голосовании) меньшинство может навязать свою волю большинству, как это было на президентских выборах в США "Буш – Гор".
Оставив в стороне человеческий фактор (например, недобросовестный или субъективный отбор данных), можно выделить несколько правил "статистической техники безопасности", связанных с самой природой статистических выводов.
Данные должны иметь действительно случайную природу (обладать статистической устойчивостью), что далеко не всегда имеет место, и очень непросто проверяемо.
Закономерность, выявленная статистически, никогда не бывает абсолютно точной: числовая характеристика всегда оценивается лишь приближенно; вероятность ошибки статистического вывода всегда отлична от нуля (ошибки первого и второго родов).
В структуре любого алгоритма статистической обработки данных заложены априорные предположения о природе данных. Если эти предположения расходятся с тем, что есть на самом деле, выводы получаются совсем не такого качества, которое от них ожидается. Практики же редко проверяют выполнимость "паспортных" ограничений на применимость процедур.
Выявленная статистическая закономерность подлежит содержательной интерпретации. Статистику нельзя обвинять за то, что вполне надежный статистический вывод неверно проинтерпретирован специалистом - пользователем; последний же часто "пеняет на зеркало".