Измерение, измерительные шкалы
Одной из задач при выработке решений является измерение рассматриваемых критериев по выбранным шкалам.
Под формированием шкалы понимается присвоение объектам (вещам, предметам или событиям) чисел согласно некоторой системе правил.
Можно выделить четыре уровня измерения и соответственно четыре типа шкал:
- шкалы наименований;
- шкалы порядка;
- шкалы интервалов;
- шкалы отношений.
В шкале наименований число используется как название или классификация. Можно нумеровать альтернативы, объекты, действия и т.д. Это не будет означать ничего иного, кроме того, что каждый отдельный предмет должен иметь различное обозначение. На шкалах наименований допустимы некоторые статистические операции. Можно, например, определить число элементов, принадлежащих какому-либо классу, найти наиболее многочисленный класс.
Шкалы порядка формируются в том случае, когда есть возможность сравнения двух объектов по общему признаку. Шкалы могут быть простого и слабого порядков. В шкалах простого порядка каждый элемент должен иметь более высокий или более низкий ранг, чем всякий другой элемент. Элементы на шкале слабого порядка могут иметь равную оценку. Поскольку элементы на шкалах порядка могут быть расположены неравномерно, то не допускается использование каких-либо арифметических операций. Возможно использование тех же статистических операций, что и на шкалах наименований и, кроме того, можно вычислить медианы, центили, коэффициенты ранговой корреляции.
Шкалы интервалов иначе называют равномерными; числено равные разности выражают эмпирически равные разности в измеряемом общем признаке. Шкалы интервалов не обладают свойством аддитивности; и, следовательно, в общем случае, на них нельзя осуществлять арифметические операции. Однако, при введении произвольного нуля, разности на шкалах интервалов можно рассматривать как абсолютные величины и производить с ними арифметические действия. Примером измерения в шкалах интервалов может служить календарное время или высота над уровнем моря. Для шкал интервалов приемлемы те же статистические операции, что и для шкал более низкого уровня, а также возможно вычисление математического ожидания, стандартного отклонения, смешанных моментов и коэффициента асимметрии.
Шкала отношений обладает всеми свойствами других шкал и, кроме этого, свойством аддитивности, что делает возможным проведение любых статистических и арифметических операций. В шкалах отношений измеряются любые физические величины; нуль шкалы естественен.
В задачах многокритериального ПР возникает необходимость формирования отдельных шкал для измерения разных компонентов рассматриваемого свойства. Такая шкала называется многомерной. При этом критерии в многомерной шкале могут измеряться по шкалам как одного, так и разных уровней.