Эксперимент и модель. Современное понятие эксперимента
Эксперимент (от лат. experimentum - проба, опыт), метод познания, при помощи которого в контролируемых и управляемых условиях исследуются явления природы и общества.
Научное исследование реального процесса можно проводить теоретически или экспериментально, которые проводятся независимо друг от друга. Такой путь познания истины носит односторонний характер. В современных условиях развития науки и техники стараются проводить комплексное исследование объекта. Этого можно добиться на основе новой, удовлетворяющей требованиям времени, методологии и технологии научных исследований.
Рассмотрим связь модели и эксперимента на примере вычислительного эксперимента.
Вычислительный эксперимент - это эксперимент над математической моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах явления, описываемого математической моделью. В проведении вычислительного эксперимента участвует коллектив исследователей - специалисты с конкретной предметной области, математики теоретики, вычислители, прикладники, программисты. Это связано с тем, что моделирование реальных объектов на ЭВМ включает в себя большой объём работ по исследованию их физической и математической моделей, вычислительных алгоритмов, программированию и обработке результатов. Здесь можно заметить аналогию с работами по проведению натурных экспериментов: составление программы экспериментов, создание экспериментальной установки, выполнение контрольных экспериментов, проведение серийных опытов, обработки экспериментальных данных и их интерпретация и т.д. Таким образом, проведение крупных комплексных расчётов следует рассматривать как эксперимент, проводимый на ЭВМ или вычислительный эксперимент.
Задача проектирования, например, сети обслуживания должна решаться с позиций системного подхода, учитывающего ее многоаспектность и иерархичность. Естественно, что те же свойства приобретает и процесс проектирования, проходящий уже на фазе моделирования несколько этапов и требующий применения разнообразного математического аппарата. В процессе имитационного эксперимента над моделью с учетом случайных исходов необходимо:
· классифицировать факторы на существенные и несущественные;
· разделить и оценить количественно влияния факторов и их комбинаций на целевую функцию;
· найти наивыгоднейшую комбинацию факторов.
Структура эксперимента (количество прогонов, выбор исходных данных для них и характер обработки результатов) определяется его целью. Первая проблема решается средствами дисперсионного анализа, вторая – регрессионного и факторного (скрининг), третья - методами статистической оптимизации.