Методы математического описания элементов и систем управления
Анализ процессов, происходящих в системах, и эффективное решение задач расчета, проектирования и конструирования систем и устройств возможны лишь с применением языка и методов математики. Причем первым этапом при исследовании или конструировании системы является составление математического описания (математической модели) ее элементов и системы в целом.
Составление математического описания конструктивного элемента системы состоит из следующих последовательных процедур: принятие исходных допущений; выбор входных и выходных переменных; выбор систем отсчета для каждой переменной; применение физического, экономического или иного принципа или закона, отражающего в математической форме закономерности протекания процесса.
| |||||||||||
| |||||||||||
Наиболее распространенной, а также наиболее общей и полной формой описания передаточных свойств систем (автоматических систем) и их элементов являются обыкновенные дифференциальные уравнения. Для большинства реальных элементов исходное уравнение, составленное строго в соответствии с законами физики, оказывается нелинейным. Это обстоятельство сильно усложняет все последующие процедуры анализа. Поэтому всегда стремятся перейти от трудно разрешимого нелинейного уравнения к линейному дифференциальному уравнению, обычно записываемого в символической или операторной форме, вида
(a0pn + a1pn-1 +… + an) y(t) = (b0pm + b1pm-1 +…
+
bm
)
x
(
t
),
где: x(t) и y(t) – соответственно входная и выходная величины элемента или системы;
ai, bi – коэффициенты уравнения;
p – оператор, сокращенное условное обозначение операции дифференцирования: d/dt = p.
Еще одним из распространенных методов описания и анализа автоматических систем является операционный. В основе метода лежит преобразование Лапласа
X
(
p
) =
L
[
x
(
t
)] =
x
(
t
)
e
-
pt
dt
,
которое устанавливает соответствие между функциями действительной переменной t и функциями комплексной переменной p.
Функциональные элементы, используемые в системах управления, могут иметь самое различное конструктивное исполнение и самые различные принципы действия. Однако общность математических выражений, связывающих входные и выходные величины различных функциональных элементов, позволяет выделить ограниченное число так называемых типовых алгоритмических звеньев. Каждому такому звену соответствует определенное математическое соотношение между входной и выходной величинами. Если это соотношение является элементарным (например, дифференцирование, умножение на постоянный коэффициент), то и звено называется элементарным.